
Title: Pulse Compression Made Easy1 With VSIPL++

Authors

First Author: Mr. Brian Chase
(US citizen)
VSI/Pro Product Manager
Verari Systems Software, Inc.
Suite D103, 110 12th Street North
Birmingham, AL 35203
Phone: +1 (205) 314-3471 ext 209
Fax: +1 (205) 314-3475
E-mail: brian@mpi-softtech.com

Second Author: Mr. WenhaoWu
(Citizen of China)
Verari Systems Software, Inc.
Suite D103, 110 12th Street North
Birmingham, AL 35203
Phone: +1 (205) 314-3471 ext 209
Fax: +1 (205) 314-3475
E-mail: wenhao@mpi-softtech.com

Third Author: Mr. Dave Leimbach
(US Citizen)
Verari Systems Software, Inc.
Suite D103, 110 12th Street North
Birmingham, AL 35203
Phone: +1 (205) 314-3471 ext 209
Fax: +1 (205) 314-3475
E-mail: dleimbac@mpi-softtech.com

Fourth Author: Mr. Rick Pancoast
(US Citizen)
Lockheed Martin Naval Electronics and Surveillance Systems - Surface Systems
199 Borton Landing Road
Moorestown, NJ 08057
E-mail: rick.pancoast@lmco.com

Corresponding and Presenting Author: Dr. Anthony Skjellum
(US citizen)
Chief Software Architect,
Verari Systems Software, Inc.
Suite D103, 110 12th Street North
Birmingham, AL 35203
Phone: +1 (205) 314-3471 ext 205
Fax: +1 (205) 314-3475
E-mail: tony@mpi-softtech.com

Submission session: Open sessions.
Presentation type: Presentation

Work area: Case Study Examples of High Performance Embedded Computing

1 High Productivity – See the abstract for more details.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 FEB 2005

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Pulse Compression Made Easy With VSIPL++

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Verari Systems Software, Inc. Suite D103, 110 12th Street North
Birmingham, AL 35203

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM00001742, HPEC-7 Volume 1, Proceedings of the Eighth Annual High Performance
Embedded Computing (HPEC) Workshops, 28-30 September 2004 Volume 1., The original document
contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

13

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

In December, 2003, Verari Systems Software, Inc. (formerly MPI Software

Technology, Inc.) undertook a phase I SBIR effort produce a high level design for a high

performance next generation embedded VSIPL product that incorporates advanced

language constructs such as those found in the VSIPL++ specification that is now under

consideration. The work was divided as follows: 1) Researching strategies to mitigate

performance degradation from C++ overhead; 2) High level design work for such a

library; 3) Prototype implementation of the new library; 4) Implementing a benchmark

application to gauge performance benefit; 5) Reporting results and making

recommendations that would apply to the ongoing VSIPL++ effort and any follow-on

Phase II work that might be awarded.

The recent introduction of several template based strategies (e.g. PETE, POOMA,

FACT!, Blitz++, and others) suggests that C++ may soon become a suitable choice for

technical and scientific computing application. For certain cases, (e.g., matrix

multiplications) inline function calls and template code outperforms straight C code.

These similar technologies all share a common set of effective strategies that may be

summarized as follows: 1) Avoid excessive temporary copies of objects (both implicit

and explicit, where the implicit ones are generated as a side effect of algebraic type

expressions); 2) Make shallow copies instead of deep cloning; 3) Pass data by constant

reference instead of by value; 4) Use compile time or static polymorphism, such as

templates; 5) Deferred evaluation; 6) Template metaprogramming strategies; 7) Inline

function calls; 8) Loop fusion and loop unrolling. The authors acquired PETE, the

Portable Expression Template Engine, and compiled several examples for the Mercury

MCOE 6.0 platform using a 171MHz SPARC machine. The authors also studied the

tradeoffs between runtime performance and significant compile time penalties.

Verari’s advanced VSIPL package design and prototype implementation strategy is

not unlike the architecture of the VSIPL++ reference implementation, which is built as a

C++ layer on top of a C VSIPL library. That particular configuration readily appeals to

all current vendors of VSIPL compliant middleware who would like to quickly enter the

market with a VSIPL++ offering. Figure 1 shown below depicts the layered hierarchical

software design used in this study.

VSIPL Reference Implementation

VSIPL C API

VSIPL++ API

User Application

VSI/Pro C/ASM Kernel

VSI/Pro C++ Engine

VSI/Pro ++

Object Oriented Strategies -
Deferred Evaluation

Pulse Compression

Additional User Applications

Critical
Benchmarks

Figure 1 Architecture or the prototype versus VSIPL++

Since the API of the prototype package mirrors that of the VSIPL++ reference
implementation, the first experiments were simply tests that are distributed with the
VSIPL++ reference code. These tests mainly check for numerical accuracy. The Phase I
study then progressed to a more complex test, a commonplace benchmarking application
used in radar processing. The pulse compression benchmark typically uses a complex
FFT, a complex reference multiply, followed by an inverse complex FFT. The
performance of the prototype library on this benchmark was inline with performance
figures than can be obtained from the VSI/Pro package. Since the VSI/Pro++ API is
similar to VSIPL++, we should expect high performance from the VSIPL++ API when
the time comes.

Other than improved performance, another noticeable observation that occurred
while porting the pulse compression application from VSIPL to VSIPL++ was the
dramatic reduction in both code size and complexity: The original VSIPL benchmark
code (which was provided by Lockheed Martin as part of this SBIR effort) consisted of
1600 lines of C code. Yet, the ported VSIPL++ code consisted only 100 lines of C++
code and the whole porting effort only required 2 weeks for one engineer. In fact, Pulse
Compression can be fully implemented in a single line of VSIPL++ code:

 OutputVector = fft_ccrv (fft_ccfv (InputVector) * fft_ccfv (WeightVector));

In conclusion, this layered software architectural approach enables high
performance, portability, high productivity, and low time to market for commercial
vendors of VSIPL standard libraries. Future directions include incorporating the
following strategies that will facilitate commercialization of the VSIPL++ standard: 1)
Generic programming for higher productivity. 2) Expression manipulation, as well as 3)
Deferred evaluation for higher performance.

Formerly MPI Software Technology, Inc.

Funded Under SBIR
Topic OSD03-022 (OSD/AF)
“High Performance Object Oriented Software for
Parallel Embedded Systems”

Pulse Compression
Made Easy with

VSIPL++

a radar

VSIPL and VSIPL++
Reference Implementations

User Application

VSIPL++ (C++)API

VSIPL C API

VSIPL Reference
Implementation

User Application

VSIPL C API

VSIPL Reference
Implementation

Math Kernels

The VSIPL Reference Implementation The VSIPL++ Reference Implementation
Builds upon the VSIPL Reference Implementation

VSI/Pro Product and the
VSI/Pro++ Prototype

User Application

VSIPL++ (C++)API

VSIPL C API

VSI/Pro Internal C++ Engine

VSI/Pro C / ASM Kernels

User Application

VSI/Pro (VSIPL C API)

VSI/Pro Internal C++ Engine

VSI/Pro C / ASM Kernels

The VSI/Pro++ Prototype
Builds upon the VSI/Pro Product

Structure of VSI/Pro

Layered Approach
versus a Pure Implementation

VSIPL++ User
Applications

VSI/Pro++ (VSIPL++ API)

VSI/Pro C++
Engine

VSI/Pro C/ASM Kernel

Object Oriented
Strategies

- Deferred Evaluation

Synthetic Aperature
Radar

Pulse CompressionCritical
Benchmarks

Synthetic Aperature
Radar

Pulse Compression

VSIPL++ (C++)API

VSIPL C API

VSI/Pro Internal C++ Engine

VSI/Pro C / ASM Kernels

• What are the benefits of a Pure VSI/Pro++ Product.
• Having both API bindings available is a hidden benefit to

programs that want to migrate their systems from VSIPL to
VSIPL++ in phases.

Performance Comparison for
1024 Point Complex FFT

Data Size CCFFT by value CCFFT by reference
VSIPL (VSI/Pro) 1024 does not apply 11.52 us
VSIPL++ (VSI/Pro) 1024 18.74 us 12.24 us

multiple CCFFT by value multiple CCFFT by reference
VSIPL (VSI/Pro) 1024 sets of 1024 does not apply 80 ms
VSIPL++ (VSI/Pro) 1024 sets of 1024 127.540 ms 82.350 ms

• Did not experience any significant overhead from layering the VSIPL++
API on top of the VSI/Pro API (See rightmost column).

Case Study: Pulse Compression
Pulse Compression works by distributing the energy in the outgoing Radar pulse over
a larger span of time with one of a select number of waveform pulses that are
generally known as chirp waveforms. This kind of filtering not only improves the
accuracy of the measurements, but also rejects most kinds of ambient noise. The net
effect is an improvement in resolution and decreased demand for peak power
requirement in the signal generation equipment. A typical pulse consists of a short
burst of frequency like the one shown here.

The digital signal processing
functions that are associated with
pulse compression applications
typically use a complex FFT, a
complex reference multiply,
followed by an inverse complex
FFT. Pulse compression, and FFT
processing in general comprise a
major portion of the processing
load in state of the art radar
systems.

Pulse Compression: The VSIPL way

The pseudocode:
Create Vectors
Create Forward FFT object
Create Inverse FFT object

Create 3 temporary vector to hold intermediate frequency domain results.

Convert reference signal vector to the frequency domain:
Forward FFT(Ref Signal Vec, Temp Vec1)

Convert Input signal to the frequency domain:
Forward FFT(Input Signal Vec, Temp Vec2)

Multiply vectors in the frequency domain:
Vector Multiply(Temp Vec1, Temp Vec2, Temp Vec3)

Obtain the inverse FFT:
Inverse FFT(Temp Vec3, Answer Vec)

Pulse Compression: The VSIPL++ way
The pseudocode:
Create Vectors
Create Forward FFT object
Create Inverse FFT object

Answer Vec = INV_FFT(FFT(Input Vec)*FFT(Reference Signal Vec));

Noisy ReturnReference Signal

Integrating Expression
Manipulation into VSIPL++

Expression object strategies address the important problem of
temporary copy proliferation that occurs as a result of operator
overloading in C++.

Existing technologies that were studied -
• PETE (Portable Expression Template Engine)

Developed at the Advanced Computing Laboratory at
the Los Alamos National Laboratory

• BLITZ++
The goal of Blitz++ is to provide a similar level of performance
on par with Fortran 77/90

• FACT! (Functional Additions to C++ through Templates and Classes)
A library that provides expression manipulation plus other functional
programming language features not normally accessible in C++.

Observations from using VSIPL++

Benefits:
• Concise code
• Readable
• Natural looking expressions

Hazards:
• Complex looking data types, may be

helped in practice by typedefs
• General C++ concerns (e.g., possible to

abuse the language)

	Authors

	Precis:
	Agenda:
	Poster:

